If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+4x^2=153
We move all terms to the left:
5x^2+4x^2-(153)=0
We add all the numbers together, and all the variables
9x^2-153=0
a = 9; b = 0; c = -153;
Δ = b2-4ac
Δ = 02-4·9·(-153)
Δ = 5508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5508}=\sqrt{324*17}=\sqrt{324}*\sqrt{17}=18\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{17}}{2*9}=\frac{0-18\sqrt{17}}{18} =-\frac{18\sqrt{17}}{18} =-\sqrt{17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{17}}{2*9}=\frac{0+18\sqrt{17}}{18} =\frac{18\sqrt{17}}{18} =\sqrt{17} $
| 5x^2+4x^2=153 | | 5x^2+4x^2=153 | | 5x^2+4x^2=153 | | 5x^2+4x^2=153 | | 5x^2+4x^2=153 | | 5x^2+4x^2=153 | | 5x^2+4x^2=153 | | 5x^2+4x^2=153 | | 5x^2+4x^2=153 | | 5x^2+4x^2=153 | | -5v=v-2 | | y+18=68 | | 2x^{3}=28 | | 5x;x=5 | | 140r-8r=4r+216 | | 2x-6+90+10x/3=180 | | (2+1.5x)(3)= | | 0=50-0,05x | | 1800=24(p+10) | | 54+76+x=180 | | –96=6g | | j^2=59 | | (-95)-5x=(-20)x+42-17 | | 2(x+16)=136 | | 18x-3(6x)=40 | | 81x2-90x+21=0 | | -3r-6=-7r+34 | | 18x-18x=40 | | 11x-4x+2x=2711x-4x+2x=27 | | 11x-4x+2x=2711x-4x+2x=273 | | -y5+3=11 | | −3�−6=−3x−6= −74 |